
Enterprise solution in PostgreSQL:
efficient and flexible access management

About initMAX s.r.o.
Enterprise solution in PostgreSQL: efficient and flexible access management

Your partner in Zabbix monitoring, PostgreSQL solutions, Wazuh and OpenSearch

Certified PostgreSQL training partner

PostgreSQL supports 11 authentication methods; the basic
ones are:

Trust authentication, which simply trusts that users are
who they say they are.
Password Authentication, which requires users to
authenticate with a password.
LDAP Authentication, which relies on an LDAP
authentication server.
PAM authentication, which relies on PAM (Pluggable
Authentication Modules) library.
Certificate authentication, which requires an SSL
connection and authenticates the user by checking the
received SSL certificate.
GSSAPI authentication, which relies on a GSSAPI-
compatible library. It is typically used to access an
authentication service such as FreeIPA or Microsoft
Active Directory and uses the Kerberos protocol.

Introduction
Enterprise solution in PostgreSQL: efficient and flexible access management

What is Kerberos, how does it work and why is it good to use it?
Kerberos is a network authentication protocol, which
serves for secure authentication of both the client and the
server
The client authenticates itself against a third party - KDC
(Key Distribution Center)
No passwords are sent over the network, nor are they
stored locally on the client
Strong encryption algorithms are used
The KDC is a central element and can provide services to
many applications and clients
Access can be controlled from one place
Failure of the central authentication service may affect the
operation of multiple systems

Introduction
Enterprise solution in PostgreSQL: efficient and flexible access management

Enterprise solution in PostgreSQL: efficient and flexible access management

6. Verification

4. ServiceTicket

3. ServiceTicket request

2. Sending Session Key and TGT

1. Authentication and ticket request

5. ServiceTicket and authentication request

7. Confirmation and connection establishment

Installed PostgreSQL server

Kerberos support and configuration
krb5-workstation & krb5-server
/etc/krb5.conf

User account for PostgreSQL in Active Directory

Generated keytab for the DB server

PostgreSQL configuration
pg_hba.conf
postgresql.conf

User account in PostgreSQL with required privileges

Kerberos ticket for DB user

Basic requirements
Enterprise solution in PostgreSQL: efficient and flexible access management

The necessary libraries must be installed on the
server and support for Kerberos must be set up

Installation of required packages

Configuring Kerberos support for the client
Editing the file /etc/krb5.conf (see example)
Editing must be done by the root user

Kerberos support and configuration

dnf install krb5-server krb5-workstation

[logging]
 default = /var/log/krb5libs.log
 kdc = /var/log/krb5kdc.log
 admin_server = /var/log/kadmind.log

[libdefaults]
 default_realm = INITMAX.LOCAL
 dns_lookup_realm = false
ticket_lifetime = 24h
renew_lifetime = 7d
 forwardable = true
 udp_preference_limit = 1
 default_ccache_name = KEYRING:persistent:%{uid}

[realms]
INITMAX.LOCAL = {
 kdc = ad.initmax.local
 admin_server = ad.initmax.local
}

[domain_realm]
.initmax.local = INITMAX.LOCAL
initmax.local = INITMAX.LOCAL

Enterprise solution in PostgreSQL: efficient and flexible access management

In Active Directory, create a service account for the
database server - for example pg_gitlab_srv01

Next, you need to generate a Kerberos keytab linked to the
account from the previous step on the Active Directory
server

We copy the keytab obtained in this way to the DB server,
for example in the /etc/postgres directory

And we can verify its functionality on the PotgreSQL server

User account for DB server in AD and keytab

ktpass –princ postgres/pg.initmax.local@INITMAX.LOCAL –pass heslo –
mapuser pg_gitlab_srv01 -crypto ALL –ptype KRB5_NT_Principal –out keytab

klist -k /etc/postgres/keytab
kinit -k -t /etc/postgres/keytab postgres/pg.initmax.local@INITMAX.LOCAL -V
Using existing cache: 0
Using principal: postgres/pg.initmax.local@INITMAX.LOCAL
Using keytab: /etc/postgres/keytab
Authenticated to Kerberos v5

Enterprise solution in PostgreSQL: efficient and flexible access management

In the configuration file of the PostgreSQL server, modify the
parameter krb_server_keyfile

In the pg_hba.conf file, enable login using the GSSAPI method

And create a user in PostgreSQL
The user must match a real user in AD

PostgreSQL configuration

krb_server_keyfile=/etc/postgres/keytab

IPv4 local connections:
host all all 0.0.0.0/0 gss include_realm=0
krb_realm=INITMAX.LOCAL

pgdemo=# create user "pgusera" superuser;

Enterprise solution in PostgreSQL: efficient and flexible access management

Getting a ticket from Active Directory

Login to PostgreSQL

In larger environments, user creation can be automated

For example, a combination of the following can be used
LDAP (Active Directory, FreeIPA, OpenLDAP,…)

and
ldap2pg

Login to PostgreSQL

kinit pgusera

psql -U pgusera -h pg.initmax.local a

Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg automates the creation, update and removal of
PostgreSQL roles

A YAML file is used for configuration

Creates, changes and deletes roles in PostgreSQL according
to settings in LDAP

Can set or remove permissions statically or according to
LDAP settings

Can manage role membership

Performs validation of the settings before its deployment
use --real parameter to apply changes

ldap2pg
Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg is available as a Python package starting from
version 6 ldap2pg is rewriten in go with no dependencies

ldap2pg python requires:
Python 2.6+ or Python 3.4+
Pyyaml
python-ldap
python-psycopg2

The authors recommend using distribution packages both
for installing dependencies and for ldap2pg itself, if
available.

Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg – installation

Download binary for your target system and architecture
from release page

Move the binary to /usr/local/bin.

Ensure it’s executable

Test installation with ldap2pg --version

ldap2pg – installation

$ ldap2pg --version
ldap2pg 6.1
github.com/jackc/pgx/v5 v5.5.5
github.com/go-ldap/ldap/v3 v3.4.8
gopkg.in/yaml.v3 v3.0.1
go1.22.1 linux amd64

Enterprise solution in PostgreSQL: efficient and flexible access management

https://github.com/dalibo/ldap2pg/releases

Guide for RHEL 6/7/8/9 compatible and Dalibo Labs YUM repository
Install the repository and refresh dnf cache

The repository can also be added manually

Install ldap2pg itself

ldap2pg – installation from repository

dnf install -y https://yum.dalibo.org/labs/dalibo-labs-4-1.noarch.rpm
dnf makecache fast

vi /etc/yum.repos.d/dalibolabs.repo

[dalibolabs]
name = Dalibo Labs - RHEL/CentOS/Rockylinux $releasever -
$basearch
baseurl = https://yum.dalibo.org/labs/RHEL$releasever-$basearch
gpgcheck = 1
enabled = 1

dnf makecache fast

dnf install ldap2pg

Enterprise solution in PostgreSQL: efficient and flexible access management

https://yum.dalibo.org/labs/dalibo-labs-4-1.noarch.rpm

ldap2pg – verifying the installation
ldap2pg –V
ldap2pg 6.1
github.com/jackc/pgx/v5 v5.5.5
github.com/go-ldap/ldap/v3 v3.4.8
gopkg.in/yaml.v3 v3.0.1
go1.22.1 linux amd64

ldap2pg --help
usage: ldap2pg [OPTIONS] [dbname]

 --check Check mode: exits with 1 if Postgres instance is unsynchronized.
 --color Force color output. (default true)

 -c, --config string Path to YAML configuration file. Use - for stdin.
 -C, --directory string Path to directory containing configuration files.
 -?, --help Show this help message and exit.
 -q, --quiet count Decrease log verbosity.
 -R, --real Real mode. Apply changes to Postgres instance.
 -P, --skip-privileges Turn off privilege synchronisation.
 -v, --verbose count Increase log verbosity.
 -V, --version Show version and exit.

Optional argument dbname is alternatively the database name or a conninfo string or an URI.
See man psql(1) for more information.

By default, ldap2pg runs in dry mode.
ldap2pg requires a configuration file to describe LDAP searches and mappings.

Enterprise solution in PostgreSQL: efficient and flexible access management

Configuration of ldap2pg is done via the ldap2pg.yml file

Configuration is done in YAML format – watch out for
syntax

It can contain everything needed to run ldap2pg

The configuration file is searched for in these standard
locations:

ldap2pg.yml in current working directory
~/.config/ldap2pg.yml
/etc/ldap2pg.yml

If the LDAP2PG_CONFIG variable or the --config <path to
configuration> parameter is set, ldap2pg will skip searching the
default file locations

It is also possible to specify ldap2pg - (with a dash) to read
the configuration from standard input

ldap2pg – configuration
Enterprise solution in PostgreSQL: efficient and flexible access management

The postgres section defines custom SQL queries for
PostgreSQL inspection.

postgres:

databases_query

fallback_owner

managed_roles_query

roles_blacklist_query

schemas_query

ldap2pg – configuration file sections
Enterprise solution in PostgreSQL: efficient and flexible access management

The privileges top level section is a mapping defining privilege
profiles, referenced later in Synchronization maps.

Using predefined privilege profiles (starts and ends with __)

privileges:

default

Can be undefined or either global or schema

type

SELECT, REFERENCES, USAGE, etc.

on

Target ACL of privilege type. e.g. TABLES,
SEQUENCES, SCHEMAS

ldap2pg – configuration file sections
Enterprise solution in PostgreSQL: efficient and flexible access management

https://ldap2pg.readthedocs.io/en/latest/builtins/

The top-level rules section is a YAML list. This is the only
mandatory parameter in ldap2pg.yaml.

Each item of rules is called a mapping. A mapping is a YAML
dict with any of role or grant subsection.

rules:

description

ldapsearch

joins

role

comment

name

options

ldap2pg – configuration file sections
Enterprise solution in PostgreSQL: efficient and flexible access management

rules: ...

config

parent

before_create

after_create

grant

database

privilege

role

schema

owner

ldap2pg – configuration file sections
Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg – example configuration

version: 6

postgres:
 roles_blacklist_query: [postgres, pg_*]
 # databases_query: "SELECT datname FROM pg_catalog.pg_databases;"
 databases_query: [postgres, a, b, gitlab]

privileges:
 ro:

 - __connect__
 - __select_on_tables__
 - __select_on_sequences__
 - __usage_on_schemas__
 - __usage_on_types__

 rw:
 - __temporary__
 - __all_on_tables__
 - __all_on_sequences__

 ddl:
 - __create_on_schemas__

...

Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg – example configuration
...
rules:
 - description: "Setup static roles and grants."
 roles:
 - name: readers
 options: NOLOGIN
 comment: Managed by ldap2pg
 - name: writers
 parent: readers
 options: NOLOGIN INHERIT
 comment: Managed by ldap2pg
 - name: owners
 parent: writers
 options: NOLOGIN INHERIT
 comment: Managed by ldap2pg
 grant:
 - privilege: ro
 role: readers
 - privilege: rw
 role: writers
 - privilege: ddl
 role: owners
 - description: "Search LDAP to create roles from all groups found."
 ldapsearch:
 base: OU=p2d2,DC=initmax,DC=local
 filter: "(&(ObjectClass=Group)(cn=POSTGRES_gitlab_*))"
 role:
 name: "{member.sAMAccountName}"
 options: LOGIN INHERIT
 parent: "{description.lower()}"
 comment: "Generated from LDAP entry {member}"
 config:
 temp_file_limit: 100000
 - description: "Search LDAP to create DBA's roles."
 ldapsearch:
 base: CN=DBAs,OU=p2d2,DC=initmax,DC=local
 role:
 name: "{member.sAMAccountName}"
 options:
 SUPERUSER: yes
 LOGIN: yes
 CONNECTION LIMIT: 2

Enterprise solution in PostgreSQL: efficient and flexible access management

ldap2pg – usage

/usr/bin/ldap2pg -c /tmp/ldap2pg_gitlab.yml --real
05:54:43 INFO Starting ldap2pg version=6.1 runtime=go1.22.1
commit=ac0bc021 pid=5958
05:54:43 INFO Using YAML configuration file. path=/tmp/ldap2pg_gitlab.yml
05:54:43 INFO Real mode. Postgres instance will be modified.
05:54:43 INFO Running as superuser. user=postgres super=true
server="PostgreSQL 16.3" cluster="" database=postgres
05:54:43 INFO Connected to LDAP directory. uri=ldap://ad.initmax.local
05:54:43 INFO Setup static roles and grants.
05:54:43 INFO Search LDAP to create roles from all groups found.
05:54:43 INFO Search LDAP to create DBA's roles.
05:54:43 INFO All roles synchronized.
05:54:43 INFO All privileges configured. database=postgres
…
05:54:44 INFO Comparison complete. searches=6 roles=7 queries=48 grants=28

$ /usr/bin/ldap2pg -c /tmp/ldap2pg_gitlab.yml
05:59:19 INFO Starting ldap2pg version=6.1 runtime=go1.22.1
commit=ac0bc021 pid=5994
05:59:19 INFO Using YAML configuration file. path=/tmp/ldap2pg_gitlab.yml
05:59:19 WARN Dry run. Postgres instance will be untouched.
05:59:19 INFO Running as superuser. user=postgres super=true
server="PostgreSQL 16.3" cluster="" database=postgres
05:59:19 INFO Connected to LDAP directory. uri=ldap://ad.initmax.local
05:59:19 INFO Setup static roles and grants.
05:59:19 INFO Search LDAP to create roles from all groups found.
05:59:19 INFO Search LDAP to create DBA's roles.
05:59:19 INFO All roles synchronized.
05:59:19 INFO All privileges configured. database=postgres
…
05:59:19 INFO Comparison complete. searches=6 roles=7 queries=48 grants=28
05:59:19 INFO Use --real option to apply changes.

Enterprise solution in PostgreSQL: efficient and flexible access management

Demo

Contact us:

Phone: +420 800 244 442

Web: https://www.initmax.cz

Email: tomas.hermanek@initmax.cz

LinkedIn: https://www.linkedin.com/company/initmax

Twitter: https://twitter.com/initmax

Tomáš Heřmánek: +420 732 447 184

Enterprise solution in PostgreSQL: efficient and flexible access management

